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Validation of a DSP Fixation Protocol 
Compatible with PIPseq™ Technology  
for Single-Cell RNA Sequencing APPLICATION NOTE

Introduction

Single-cell RNA sequencing (scRNA-seq) has made profound 

impacts in the study of cellular and molecular diversity in 

complex tissues1-5. However, specialized capital investment, 

high reagent costs, lack of accessibility and scalability are 

key factors limiting the wide scale adoption and use of single 

cell technologies. Fluent BioSciences has developed a 

breakthrough single-cell analysis technology that relies on Pre-

templated Instant Partitions (PIPseq) that can scale easily from 

hundreds to millions of individual partitions in a single sample. 

This technology offers a low barrier to entry without the need for 

complex instrumentation or expensive consumables, and can 

be easily implemented in any molecular biology laboratory.

One complication to single-cell transcriptomic experimental 

design is timely acquisition, processing, and analysis of samples. 

Cell fixation, using a variety of chemical agents, has been utilized 

to preserve the transcriptional states of dissociated cells for 

scRNA-seq analysis. This method has enabled asynchronous 

collection of clinical samples, banking of samples, and time 

course of treatment studies with efficient, parallel sample 

processing of the preserved cells. Here, we demonstrate 

compatibility of cell fixation with PIPseq to evaluate cellular 

diversity in peripheral blood mononuclear cells (PBMCs), which 

have become an established cell type to resolve heterogeneity 

within complex biological systems, as they comprise a diverse 

collection of closely related immune cell populations.

In these studies, we use the reversible cross-linker 

3,3′-dithiodiprpionic acid di(N-hydroxysuccinimide ester) (DSP), 

which has been shown to preserve the quality and integrity of 

RNA and allows for a standard transcriptomics workflow post-

fixation. We show that cell types from DSP-fixed PBMCs can 

be resolved using the PIPseq workflow with a high degree of 

accuracy, and the information is consistent with an established 

competing scRNA-seq technology. 

Methods

Here, we describe the PIPseq workflow and protocol for use 

with DSP-fixed PBMCs (see Figure 1 and Protocol 1). To begin 

with, we created a single cell suspension and then incubated 

the suspension in a DSP solution, followed by several washes. 

The DSP-fixed cells were then added into the PIPs-containing 

tubes provided in the Fluent 3’ Single Cell RNA Kit following 

the standard PIPseq workflow. 

The PIPseq workflow (Figure 1B) begins with prepared cell 

suspensions which are mixed with Fluent template particles 

and segregated into Pre-templated Instant Partitions (PIPs) 

by simple vortexing. Cells in PIPs are then lysed on a thermal 

device and mRNA is captured by barcoded oligonucleotides 

incorporated with the template particles. cDNA is generated 

from the captured mRNA via reverse transcription and amplified 

to create a cDNA library for each individual cell. The single-cell 

cDNA libraries are then processed into sequencing libraries 

using standard library preparation methods followed by next 

generation sequencing (NGS).  From the sequencer, FASTQ files 

are output and uploaded into PIPseeker, Fluent’s proprietary 

analysis platform, to process scRNA-seq data through barcode 

extraction, mapping, gene-barcode matrix generation, and 

secondary analysis (i.e., clustering and differential expression). 

PIPseeker is compatible with multiple species, cell types, and 

treatment approaches, including DSP fixation.

Pre-processed data can be transferred into multiple 

downstream processing environments, such as R-based 

SeuratA or Python-based ScanPyB, to enable biological 

discoveries. Here, we utilized the Seurat infrastructure to 

analyze and visualize our results. Once loaded into Seurat, 

we removed cell barcodes that had less than 150 genes 

A  https://satijalab.org/seurat/

B  https://scanpy.readthedocs.io/en/stable/

https://satijalab.org/seurat/
https://scanpy.readthedocs.io/en/stable/
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per cell. Barcodes that passed this filter were annotated by 

PBMC cell type using SingleR6, a tool designed to compare 

each cell individually to a reference population. We used 

the annotated Seurat object from the Seurat PBMC Guided 

Clustering VignetteC as the reference, which is derived from 

a 10X Genomics v1 chemistry PBMC dataset. Then, the data 

were normalized using SCTransform7, a method that utilizes 

variance stabilization to transform the data in a way that is 

most consistent with scRNA-seq data distributions. Principal 

component analysis (PCA) was performed on the transformed 

data to find axes with the most variance, and input as variables 

into the uniform manifold approximation and projection 

(UMAP) algorithm. Additionally, the data were clustered using 

a graph-based method8, which uses nearest neighbors to 

identify local regions at different resolution levels. At our 

level of resolution (Seurat default, 0.5), we identified and 

removed four clusters that had significantly lower transcripts 

per cell and were associated with several SingleR-annotated 

cell types, indicative of lower data quality. Upon cleaning, 

data were re-clustered (using the graph-based method) and 

projected (using UMAP).

Further analysis was performed on the cleaned dataset, 

including calculating a percentage of each cell type from the 

SingleR-annotated cell type counts and a Pearson correlation 

between these percentages. The 4 example DSP-fixed PIPseq 

replicates and 2 replicates from a competitor technology were 

subjected to a transcript length analysis. Mapped transcripts 

were normalized by transcripts per million (TPM), and matched 

to their associated reference transcript on the reference 

genome. Reference transcripts were grouped into 5,000 bins 

based on their length (in linear space, although the plot axis 

is log10), and the mean and standard deviation of the TPM was 

calculated for each bin. Finally, a gene ontology (GO) semantic 

similarity analysis was performed to quantify the data similarity 

between DSP-fixed PIPseq and an unfixed competitor sample 

replicate. Specifically, the top 500 most variable genes in 

each assay (using SCTransform) were subjected to a GO over-

representation analysis to identify significant GO terms. A 

pairwise similarity matrix was generated for each term in two 

comparison GO term lists, and combined into a single score 

using the best-match average (BMA) approach in GOSemSim9, 

an established package to calculate semantic similarity. GO 

terms that were shared in the over-representation analysis 

independently for DSP-fixed PIPseq and the competitor assay 

were identified.

Figure 1A: 

Figure 1B: 

PIPseq workflow for DSP-fixed PBMCs. (A) DSP fixation cell preparation workflow for PIPseq (see Protocol 1).. (B) Standard PIPseq workflow. DSP-fixed cells can be 

input into the same PIPseq assay as unfixed cells. 

Figure 1: 

C  https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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Required reagents and equipment: 

1. Pierce DSP, no-weigh format
2. Anhydrous DMSO
3. Fluent Cell Suspension Buffer
4. Swinging bucket centrifuge with cooling 

capability

Procedure: 

1. Equilibrate DSP from 4C to room temperature for 20 minutes

2. Make 50 mg/mL DSP in anhydrous DMSO. This is the
50X stock.

3. Make 1X DSP solution in Cell Suspension Buffer

4. Resuspend cell pellet in 500 uL 1X DSP and let stand for
30 minutes at room temperature

5. Centrifuge cells at 200 x g for 3 minutes to pellet cells

6. Resuspend cells in 6 mL Cell Suspension Buffer

7. Using a 4C pre-chilled centrifuge, pellet cells at 200 x g
for 3 minutes

8. Aspirate the supernatant without disturbing the cell pellet

9. Repeat steps 6-8 two more times for a total of three washes

10. Resuspend cells in 400 uL 4C pre-chilled Cell
Resuspension Buffer

Protocol 1: DSP Fixation of PBMCs

Results

We processed four replicate reactions from one sample of  

DSP-fixed PBMCs through the PIPseq T2 3’ Single Cell RNA 

Kit and sequenced them on a NextSeq 2000 at approximately  

95 million reads per replicate. In total, four replicates captured 

a total of 3,565 cells at ~108,000 reads per captured cell. 

Each replicate achieved similar metrics, with an average of 

~63% mapping, ~777 median genes/cell, and ~1,082 median 

transcripts/cell (Table 1). In order to resolve the PBMC cell type 

distribution, we ran the captured cell count matrix through 

downstream processing in Seurat and performed automated 

cell type annotation. The preprocessed gene expression matrix 

was normalized and projected in two-dimensional space using 

the Uniform Manifold Approximation and Projection (UMAP) 

algorithm (FIG. 2). PIPseq resolves all of the major PBMC cell 

types, including CD4+ T cells (naive and memory), CD8+ T cells, 

natural killer (NK) cells (also CD8+), B cells, monocytes (CD14+ 

and CD16+), dendritic cells (DC), and plasma cells. 

CAPTURED 
CELLS

READS / CAPTURED CELL MAPPING RATE (%)
MEDIAN TRANSCRIPTS / 

CAPTURED CELL
MEDIAN GENES / 
CAPTURED CELL

Replicate 1 814 115,208 58.5 962 737

Replicate 2 654 116,474 57.8 1,184 864

Replicate 3 978 99,989 66.9 1,225 828

Replicate 4 1,119 99,545 68.2 976 707

Average 891 107,804 62.8 1,082 777

Table 1: 

Key sequencing quality metrics for DSP-fixed PBMCs processed using the Fluent PIPseq T2 3’ Single Cell RNA Kit.

PIPseq enables immune cell type determination in DSP-fixed PBMCs.  

After preprocessing, approximately 3,565 were captured. Further quality filtering 

resolved 2,521 cells, which were annotated by immune cell type and projected 

in two dimensional space with UMAP. Cell type annotation was performed using 

SingleR with a Seurat-annotated 10X Genomics v1 PBMC reference.

Figure 2: 
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The cell type distribution captured by PIPseq with DSP-fixed 

cells resembles a leading competitor kit processed using the 

same cell batch (Figure 3A), with a strong positive correlation 

(Figure 3B). Specifically, CD4+ T cells were observed in highest 

abundance, followed by monocytes, CD8+ cells, B cells, DCs, 

and platelets. PIPseq has a comparable transcript length 

distribution to the competition, with a slight bias towards 

shorter transcripts (Figure 3C). In terms of transcript diversity, 

PIPseq captures similar classes of transcripts to the competitor 

assay, as seen by the gene ontology (GO) semantic similarity 

scores (Figure 3D). The competitor-PIPseq comparison (green) 

yielded a similar score to the positive controls (red/blue), 

and is significantly different from the negative control (grey). 

Together, we can see that PIPseq matches the resolution of a 

key benchmark technology at the level of true biology. 

Figure 3A: 

Figure 3C:

Figure 3B: 

Figure 3D: 

DSP-fixed PBMCs exhibit similar cell type and transcript distributions to a competitor technology. (A) Cell type distribution for competitor technology (left) vs DSP-fixed PIPseq 

PBMCs (right). (B) Correlation of PBMC cell type proportions for the competitor technology and DSP-fixed PIPseq PBMCs. (C) Transcript length distribution for competitor technology 

vs. DSP-fixed PIPseq. Mapped transcripts lengths (in bp) were grouped into 5000 bins and the average TPM across that bin are plotted at the center of that bin with a standard 

deviation. (D) Semantic similarity score (scale: 0 - 1) of GO terms derived from top 500 variable genes from the competitor assay and DSP-fixed PIPseq assay. Random samplings of 

50 GO terms were used for each comparison in order not to bias the score. Self scores (red/blue) were calculated by comparing 2 random samplings (with replacement) of the GO 

term list from that technology (positive controls), while the random score (grey) was calculated by comparing 2 random samplings (with replacement) of the entire list of possible GO 

terms (negative control). The direct technology comparison (green) was generated by comparing the random sampling of the competitor and PIPseq GO term lists.

 

Figure 3: 
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Conclusion

We demonstrate that the Fluent BioSciences PIPseq T2 3’ Single Cell RNA kit can generate high quality data to resolve immune cell 

types in DSP-fixed PBMCs. By generating this data, we show our ability to differentiate complex, heterogeneous cell populations 

with high resolution, a key indicator of success in single-cell technologies. Additionally, we provide evidence that our DSP-fixed cells 

provide similar information to standard unfixed PBMCs using a leading competitor kit. Our ability to provide high-level biological 

insights to users from different cell preparation methods will enable new discoveries and make single-cell biology accessible to 

every researcher. 
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